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CHAPTER I

INTRODUCTION

In this report the results of an FY 80 study of bottom interaction

in a range dependent environment are summarized and presented. Bottom

interaction in a range variable environment represents one of three

areas of study in the ARL:UT FY 80 bottom interaction program. The main

thrust of this area of work is to determine the effects and relative

importance of lateral subbottom variability and sloping boundaries on the

propagation of low frequency underwater sound.

The range variability study is now in its third year. The FY 78 work

focused primarily on the assessment of analytical tools for describing

sound propagation in a range variable environment and began a line of

work concerned with determining the importance of lateral subbottom

variability and sloping boundaries. The FY 78 results are summarized in

Ref. 1.

The FY 79 range variability work was a continuation of the work begun

in FY 78 and had several foci. In FY 78 it was determined tha. coupled

normal mode theory 2 '3 offered the best means for modeling and investigating

bottom interaction mechanisms in a range variable environment. One phase

of the FY 79 work involved establishing a firm theoretical foundation for

the application of coupled mode theory to problems of interest. One

particular problem investigated was the effect of boundary condition

approximations4'5 on coupled mode theory in sloping bottom problems, and

a corrected theory to counteract the undesirable aspects of the approxima-

tion was derived. The implications of the adiabatic approximation 6 were

also studied and the FY 78 work, concerning the importance of lateral

variability and sloping boundaries, was continued.

1...
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Another phase of the FY 79 work concerned building the appropriate

tools necessary to investigate the effects of range variability. In FY 79

the groundwork was laid for an adiabatic normal mode model, and work was

begun on the development of the model. This work continued into FY 80

where it was completed. All the FY 79 bottom interaction work is

summarized in Ref. 8.

The work summarized in this report is presented in Chapters Il-IV.

Chapter II reports on the adiabatic normal mode modeling effort that was

begun in FY 79 and recently completed in FY 80. The basic propagation

loss modeling scheme, which has been named ADIAB, is described in a

general manner. The computation scenario and the theory of adiabatic

normal mode propagation are described, but there is no discussion of

computational algorithms, computer code, or details concerning input/output.

The working details of ADIAB will be presented in a specific report to

be issued later, but Chapter II contains some numerical examples of the

outputs from ADIAB. These numerical examples are compared with actual

propagation loss data to illustrate the power of the modeling method.

In Chapter III the results of a study of the sensitivity of upslope

and downslope propagation to subbottom attenuation are presented. The

numerical modeling results that are shown are produced using the model

ADIAB described in Chapter II. The conclusions of Chapter III are listed

below.

It has been determined that the gross structure (minub phase effects)

of acoustic propagation over a sloping bottom can be explained in terms

of bottom attenuation effects, renormalization effects, spreading loss,

and mode cutoff effects. The renormalization effects produce a gain in

upslope propagation and a loss in downslope propagation. The mode cutoff

effects are not operational in downslope propagation.

2

1~~ *.



Concerning downslope propagation, the following determinations have

been made.

(1) The deep water acoustic field is particularly sensitive to the

shallow water bottom attenuation profile.

(2) The importance of bottom interaction mechanisms decreases as

sound propagates from shallow to deep water and becomes

negligible when the deep water sound channel becomes fully

developed.

(3) The sensitivity of the acoustic field to the bottom attenuation

greatly increases as sound propagates from shallow to deep water.

(4) Downslope acoustic propagation is not particularly sensitive to

bottom slope.

With regard to upslope acoustic propagation, the following determina-

tions have been made.

(1) The shallow water acoustic field is particularly sensitive to

the shallow water bottom attenuation profile.

(2) The importance of bottom interaction mechanisms increases as

sound travels upslope from deep to shallow water where it reaches

a maximum.

(3) The sensitivity of the acoustic field to the bottom attenuation

greatly increases as sound travels from deep to shallow water.

(4) Upslope sound transmission is sensitive to slope angle, especially

for deep or shallow source depths.

(5) A slope enhancement effect is possible in upslope propagation

.and is most apparent for source depths in the deep sound channel.

Chapter IV considers some further theoretical work on the coupled

mode theory of sound propagation. In this chapter the solutions to the

coupled radial equations that describe the normal mode amplitudes with

range are studied in detail. Several expressions for the radial functions

are obtnined employing a WKB approximate radial Green's function. First

order perturbation theory is applied to these expressions to obtain

functions of utility for numerical computation. The attenuation process

is also introduced into the mathematical formalism. The second part of

Chapter IV concerns application of the theory developed in the first part.

In this section arguments for the neglect of backscattering in a range

3
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dependent waveguide and ways of estimating the importance of mode coupling

effects are given. Also, approximate ways of introducing mode/mode cou-

pling that could be incorporated into ADIAB are discussed.

This report concludes with Chapter V, which looks at possible future

directions of the bottom interaction study concerning range variability.

There are many problems to be addressed, such as the level of detail

required to characterize the range variability of the ocean bottom, range

averaging, and energy partitioning. An attempt is made to pose the

appropriate questions to these concerns.

4



CHAPTER II

AN ADIABATIC NORMAL MODE THEORY PROPAGATION LOSS MODEL

In this chapter an adiabatic propagation loss model, developed at

ARL:UT as a tool for investigating the propagation of sound in a range

variable waveguide, is described and discussed. First, the basic theory

of an adiabatic normal mode description of underwater sound propagation

in a range dependent medium will be discussed. Next, the numeiical

implementation of adiabatic mode theory is described. Finally, numerical

examples are given illustrating various output options of the model. The

numerical examples are then compared to actual propagation loss data.

A. Theory

Adiabatic normal mode theory is an approximate form of the coupled

mode theories of sound propagation proposed independently by Pierce2 and

Milder. 3  In a coupled mode theory of sound propagation the acoustic field

due to a point source in a range variable medium is expressed as

'(z,r) = Rn (r) n(z,r) (2.1)

n

Implicit in Eq. (2.1) is the neglect of the continuous spectrum of

eigenvalues. The field ' is the velocity potential and satisfies the

following partial differential equation in cylindrical coordinates,

V2 + k2(z,r) = -4n6( - o) . (2.2)

5



In Eq. (2.2) k(z,r) is the wave number of the medium, which can vary

with depth and range, and r denotes the position of the point source.
0

The particle velocity and acoustic pressure are to be continuous across

all discontinuities in the medium. This requirement translates into the

following boundary conditions on 1p. The continuity of particle velocity

requires that the normal derivative of i, (a/n), be continuous across

surfaces of discontinuity. The continuity of pressure requires that PO

be continuous, where p is the material density of the medium. The

boundary condition requiring continuity of the normal derivative of

gives rise to an additional source of range dependence whenever sloping

interfaces are present. In practice, the partial separation of range and

depth variables implied in Eq. (2.1) requires that the normal derivative

boundary conditions be approximated whenever sloping boundaries are

present. Since this boundary condition approximation does not affect the

adiabatic approximation to coupled mode theory, it will not be discussed

here. The nature of the boundary condition approximation and a method for

correcting it are discussed in detail in Refs. 4 and 5.

In Eq. (2.1) the n functions are normal mode depth functions that

satisfy

+ k2 (z,r) - k2(r in(z,r) = 0 (2.3)

at each range point throughout the waveguide. Across any interfaces in

the waveguide, pon and doP /dz are required to be continuous. In Eq. (2.3)

the k n(r) are the normal mode eigenvalues which depend on range whenever

the waveguide varies in range. The radial functions R n(r), Eq. (2.1),

satisfy the following set of coupled differential equations.

[2 R W R + B - + 2 (2.4)

2 r r m )r R(r) ffi mn n mn r dr

dr n

6
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The A and B are referred to as the coupling coefficients and aremnn msn
given by

A n(r) = O (Z) z,r) -j *n(Z,r)dz (2.5)"r
2

0

BAn(r) = 0 (Z(,r) _ (z,r)dz . (2.6)
00

In the adiabatic approximation to coupled mode theory, 2 '3 '1 0,1 ' 1 2

the possibility of the coupling of energy between normal modes is ignored.

This entails neglecting the coupling terms on the right-hand side of

Eq. (2.4). The validity of the adiabatic approximation depends on the

rate with which the medium is varying in range. References 4, 6, and 7

investigate the adiabatic approximation as a function of lateral geoacoustic

parameter variability and sloping boundaries. In Chapter IV some new

methods for determining the validity of the adiabatic approximation are

proposed and discussed. The work discussed in this chapter will assume

the validity of the adiabatic approximation and will defer a discussion

of mode coupling effects to Chapter IV and future work.

The radial equation in the adiabatic approximation therefore

satisfies the following differential equation,

F 2 1d 2 + km(r Rmin(r) - 0 .(2.7)
r~)

The acoustic field given by Eq. (2.1) with R (r) given in the adiabatic
n

approximation can be shown to conserve energy (see Refs. 4 and 5). The

power associated with a particular mode at the source remains associated

with that mode as long as the mode continues to exist in the waveguide.

In the past, several adiabatic propagation loss models have been
13developed. One such model is SNAP, a shallow water adiabatic propagation



loss model that was developed at SACLANTCEN. Another modeling scheme,'1

which is based on the assumption of segment-wise linear variation of the

wave number squared with depth and the eigenvalues squared with range,

employs Airy functions for both the depth and radial functions. The model

that is described in this chapter is a numerical tool in which the user

is allowed a very general description of the propagation medium, partic-

ularly in the local depth variability of the bottom sound speed and

attenuation and the layering structure of the bottom.

B. Numerical Implementation

The implementation of adiabatic normal mode theory to produce a

numerical propagation loss model is accomplished in three basic steps.

First, the medium is partitioned into range bins and a set of normal

modes and eigenvalues for each range bin is computed. Second, the mode

attenuation coefficients are computed for each range bin, and the mode

eigenvalues are fit by a cubic spline function. Third, radial functions

are computed and the appropriate mode summations are performed to produce

the desired propagation loss output such as propagation loss versus

depth or range.

I. Stage One

The partitioning of the medium is presently left to the discretion

of the user. This process is schematically illustrated in Fig. II.I.

At the midpoint of each range bin a set of normal mode depth functions

and eigenvalues are computed, retained, and become associated with that

range bin. The mode calculations are carried out using NEMESIS,14 which

numerically integrates Eq. (2.3) at the midpoint of the range bin, assuming

locally horizontal interfaces. The sound speed variations with depth at

this range point may be completely general in nature.

The partitioning of the medium and the normal mode computations

are by far the most time consuming part of the computational scheme. As

stated before, the partitioning of the medium is left to the user who,

8
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in principle, can sample the medium in range as finely as desired. Of

course, the finer the partitioning of the medium the more lengthy and

time consuming are the mode calculations. In practice there must be some

compromise between the added accuracy obtained by fine sampling and the

computational time requirements.

2. Stage Two

The second and third stages of the adiabatic calculations are

linked loosely together under the model name ADIAB. ADIAB assumes that

the medium has been partitioned and the normal modes computed and stored

on disk files and proceeds with the calculations required to produce

propagation loss.

The second stage of the adiabatic calculations involves the

calculation of mode attenuation coefficients for each range bin and

fitting the eigenvalues through all the range bin midpoints using a cubic

spline. The fitting procedures are applied to the eigenvalues to facilitate

the computation of the radial functions, which are computed using the

WKB approximation rather than solving Eq. (2.7) numerically. In the WKB

approximation the solution of Eq. (2.7) is given by

A exp(i frkn[Xxdx)
R (r)= n ,I(2.8)n rkkn(r) r

where A is a constant that depends on mode number. The fitting of then

eigenvalues allows the phase integration in Eq. (2.8) to be done analyti-

cally rather than numerically, with significant savings in computational

time. The phase integral for each mode is evaluated at the midpoint of

each range bin, and these values are then fitted with a cubic spline.

Thir is done to enable the value of the phase integral to be easily

and quickly computed at any range point.

10
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The mode attenuation coefficients, which are also evaluated in

the second computational stage, are used to incorporate the effects of

attenuation into the radial functions. The mode attenuation coefficients

are computed by first order perturbation theory using the following

integral.

00

n(r) = k(r)-f (z,r)k(z,r)(z) 2 (z,r)dz (2.9)
n n

In Eq. (2.9), a(z,r) is the attenuation profile, k(z,r) the wave number,

and p(z) the density, which is assumed to be constant within a layer.

One set of mode attenuation coefficients is computed for each range bin

using the attenuation and sound speed profiles at the midpoint of the

range bin in question. After the attenuation coefficients are computed

for each range bin, attenuation can be incorporated into Eq. (2.8) as

follows.

r

(r)= An exp kn( X)dx 1 n ,d (2.10)
n 1 nr)r r

with the I being independent of range within a bin. For a more detailedn
discussion concerning first order perturbation theory and normal mode

attenuation coefficients, consult Ref. 4.

3. Stage Three

The desired propagation loss calculations are performed in the

third stage of the adiabatic field calculation, i.e., the second part

of program ADIAB. The computed propagation loss is given by

l(z,r;zo,r) = 10 logIip (z,r) 12  (2.11)

i1



In Eq. (2.11) I is the propagation loss between the field point (z,r)

and a point source at (zo,r ). At present the second part of ADIAB is set

up to compute propagation loss versus range for given source-receiver

depths or propagation loss versus depth for given source-receiver ranges.

Both coherent and incoherent computations of propagation loss are performed.

Another option available to the user is the capability to compute propaga-

tion loss between a fixed source and a receiver that moves along an

interface at a fixed distance above or below the boundary. This option

can conceivably be used to examine the response of arrays of receivers

located along a sloping boundary.

The propagation loss computation phase of ADIAB can be run

only after stage one is accomplished. The fitting coefficients and mode

attenuation coefficients computed in the first phase of ADIAB can be

saved and used repeatedly in propagation loss calculations. In the

standard propagation loss calculation in ADIAB, a fixed source is assumed

while the receiver position changes with range. There is, however,

an option where the receiver is fixed and the source position changes.

The coherent propagation loss is computed from the velocity

potential p using the following expression.
r r

exp (i jrok n [xldx - /ro6n[xdx)
ip(z,r) = ipdz )exp(-iir/4)f , 0__ fx~ kxd ro-

0 r-r n (r)

x On (z,r) n (Zo~ro0) (2.12)

In Eq. (2.12) the source is stationary at (z ,r0) and the receiver is at

(z,r). The constants and the mode function evaluated at the receiver in

Eq. (2.12) arise from the requirement that the adiabatic field match the

field for a horizontally stratified medium in the source region. The

velocity potential as expressed by Eq. (2.12) neglects any backscattered

field, because the adiabatic approximation is an approximation of zero

12

1I



order in the rates of change of the medium. The backscattered field

can be shown to be of first order in these same quantities and cannot

be consistently retained.

In the propagation loss computation phase of ADIAB the mode

functions and attenuation coefficients that enter into Eq. (2.12) are

fixed within a range bin. The fitted cubic polynomials describing the

range behavior of the phase integral are used to analytically evaluate

the phase integral and the k n(r) term in the denominator of Eq. (2.12).

The accumulated attenuation between source and field point for each mode

is also easily computed analytically, since the mode attenuation

coefficients are constant within a range bin. After the velocity potential

has been computed for a particular source/field point geometry, the coher-

ent propagation loss is computed from Eq. (2.11). The term "coherent"

is used to indicate that phasing effects between modes are included.

The complex velocity potential is used to compute the propagation loss

because it is more computationally efficient, i.e., a single mode sum is

performed rather than a double mode sum.

The incoherent evaluation of propagation loss is obtained by

summing the normal modes without regard to phase. The expression

evaluated in ADIAB is obtained from Eqs. (2.11) and (2.12) by ignoring

the off-diagonal terms in the resulting double summation. This expression

is given by r

27p2(z) exp (-2fro6n(x)dx) 2

In(z,r;z,r) - 10 log (zr)nI r-r n kn (r)

(2.13)

2Cn(Z,ro
n 0 0

In Eqs. (2.12) and (2.13) the summation over mode number n goes

from the lowest mode number to an upper limit, which is the number of

discrete modes that can propagate between the source and field points.

Therefore, for a fixed source in deep water and a receiver moving upslope

to shallower water, the number of terms in the summations of Eqs. (2.12)

13
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and (2.13) decreases with increasing range. Conversely, for a fixed

source in shallow water and a field point moving downslope into deeper

water, the number of terms in the mode summations stays the same, since

the fixed shallow water source position usually has the least number of

modes, assuming a monotonic increase in water depth with range. Once a

normal mode reaches cutoff, it can be ignored within the adiabatic

approximation because there is no mechanism to impart energy to it should

it reappear farther down range.

As mentioned earlier, the standard calculation in ADIAB

assumes a fixed source and a range variable receiver. The converse

situation of a fixed receiver and a varying source position is obtained

by interchanging the source-receiver locations in Eq. (2.12) and letting

the source position vary in range. For a receiver fixed at (z0 ,r0 ) and

a variable source position denoted by the field point (z,r), the field

is given by exp(frr- 6n,(X)]dx)

P(zo,r) = ip(z) exp(-iT/4)f 2r__
r-ro J n \ k k(ro)

× n (zo,r )0n (z,r) (2.14)

Since only the absolute square of $ is needed to compute transmission

loss, the fixed receiver calculation is obtained in precisely the same

way as for the fixed source with the exception that the eigenvalues k n(r )

in the denominator of the mode sum are now fixed in range. This is the

only difference between the fixed source and the fixed receiver transmission

loss calculations, and in numerous situations is of negligible importance.

4. Peripheral Programs

Program ADIAB is basically a transmission loss computational

package. Two other peripheral programs which can be used in conjunction

with ADIAB are under development at ARL:UT. The first of these programs

14



is an eigenvalue plotting package that produces plots of mode eigenvalues

as a function of range and printouts of mode eigenvalues at user specified

ranges. This particular program takes the fitting splines of the phase

integrals, which were computed and stored in the first part of ADIAB, and

computes the derivatives (i.e., k (r)) at required range points.
n

The second peripheral program under development computes various

energy flux quantities. The total power transported radially by a point

source through a cylindrical surface centered about the source is given

in the adiabatic approximation by (see Ref. 4)

3ri nIj(n) (2.15)Jr r

r 0n 0J(n) 2'r2 wp2 (Zo ) 2(z ,ro) .(2.16)

In Eqs. (2.15) and (2.16), (zor ) denotes the source location and J(n)
0 r

is the power transported radially by mode n. The modal power amplitudes

as well as the total power are independent of range, excluding mode cutoff

effects, in the absence of attenuation. The effects of attenuation may

be included by altering Eq. (2.16) so that

r

j n)(r) = 27 2 WP2 (z )0 2(zor ) exp _2 j 6. ( x ) d x )  (2.17)
r o n (- n(~x

(n) a
The energy flux program that is being developed calculates J and J as a

r r
function of range using Eqs. (2.17) and (2.15) and the mode attenuation

coefficients computed and stored in the first part of ADIAB. The program

will also compute some other quantities that are defined and discussed

below.

The power transported by waterborne modes, Jw' and bottom

interacting modes, JB' can be defined as follows.

15
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M(r) (n)

J (r) = J (r) , (2.18)
n=1

N (r)
NrB)r) J(n)(r) (2.19)

n=M (r)+l r

(r) = J(r) + JB (r) (2.20)

In Eqs. (2.18) and (2.19) M(r) denotes the last mode with a turning

point in the water and N(r) denotes the maximum number of discrete mcdes

allowed to exist. Both M(r) and N(r) can vary with range.

The energy flux program, which evaluates and(n)

also computes Jw and JB as well as various ratios such as JwB/J, Jw/Jr'

and J /J as functions of range. These functions are of potential use

in investigating bottom interaction effects in range variable environments.

For example, using ratios such as Jw/Jr and JB/Jr one could examine the

partitioning of energy between the water column and the bottom and how it

changes as a function of range. The ratio of waterborne energy flux to

bottom interacting flux, J w/J could be used as a measure of the impor-

tance of bottom interaction as a function of range. It is conceivable that

the behavior of this ratio as a function of range upslope could be used

to find positions along a slope where the contaminating effects of bottom

interacting energy are minimized through the combined effects of bottom

attenuation and slope geometry. The potential applications t) slope

mounted arrays looking into deep water are obvious.

Figure 11.2 is a schematic diagram indicating the present

adiabatic computational capabilities and those soon to be completed. A

detailed report concerning the adiabatic propagation loss program ADIAB

will be published at a later date. This report will include a listing

of the computer code, detailed us' instructions, and discussions of

input/output procedures, run times, and computational algorithms.

16
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C. Numerical Examples

In this section numerical examples illustrating some of the previously

described adiabatic computational capabilities will be presented. Compari-

sons are made between model calculations and propagation loss data generated

from experiments involving upslope and downslope runs and explosive sources.

The sound speed profiles and bathymetry for a representative downslope

propagation run will be used to generate the examples presented in this

section.

The bathymetry for the propagation loss track in question is shown

in Fig. 11.3. A source that moved downslope to deep water was located at

a depth of 91 m, and receivers at depths of 18, 91, and 305 m were fixed

in the shallow water at range zero. Although the propagation loss for

this run was processed in many frequency bands, the results presented

here will consist of the 50 Hz data only. In Fig. 11.3 the compressed

range scale indicates a drastic slope even though the average slope is only

about 10. For this small slope the adiabatic approximation should work

quite well.

Figure 11.4 shows some representative deep water velocity profiles

along the propagation loss track, and Fig. 11.5 shows the average sound

speed profile used in the propagation loss calculations. The shallow water

profiles were obtained by truncating Fig. 11.5 at the appropriate depths.

The subbottom structure in the propagation area was not known in any

detail, but the layering and attenuation structure of the bottom were

inferred from the shallow water portion of the data (see Ref. 9). A

geoacoustic model of the sediment structure that produced good agreement

withi the data is given in Table I. In this model the sound speed was

taken to be continuous across the water-sediment interface and throughout

the sediment, and the attenuation was assumed to be constant within a

sediment layer. The substrate began at a depth of 200 m below the water-

sediment interface. The substrate shear and compressional wave speeds
3

were 2700 and 5000 m/sec, respectively, and the density was 2.7 g/cm3

18
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The substrate attenuations were taken as 0.03 dB/m/kHz for compressional

waves and 0.2 dB/m/kHz for shear waves. This sediment-substrate model

was retained throughout the propagation loss run.

Figures 11.6 and 11.7 show the incoherent propagation loss versus

range for the 305 m receiver and the 91 m source depths. The stairstepped

curve in Fig. 11.6 is the raw computation and the curve in Fig. 11.7 is

a version that has been smoothed in range over a sliding window of 25 km.

The stairstepped nature of the first curve results when a new range bin

is entered and the mode functions change abruptly from those in the

previous bin. Throughout the rest of this chapter and report, whenever

incoherent propagation loss versus range is shown, it will be a smoothed

version of the raw calculation. In the shallow water regions 36 discrete

modes were possible. This number increased monotonically bin by bin

until, in the deep water, 115 modes were possible. However, since the

receiver was fixed in the shallow water, only 36 modes were included in

the mode sums. Figure 11.8 shows the coherent version of the curve in

Fig. 11.6.

Figure 11.9 shows a comparison of the experimental data (illustrated

by the crosses) with the smoothed model calculations (Fig. 11.7) for 50 Hz.

The calculations were generated with the geoacoustic model of Table I.

Note the good agreement between data and calculations over most of the

ranges. In the region of 140-180 km the data show some added structure

and generally less propagation loss than the calculations. A comparison

of Fig. 11.8 with Fig. 11.9 in the range interval in question indicates

that the structure of the data in this region might be real and related

to intermode phasing effects.

Figure 1I.10 shows a comparison of the propagation loss for the

experimental data with the smoothed, incoherent, model transmission

loss calculations for 91 m source and receiver depths. Figure II.11 shows

the same comparison for 91 m source and 18 m receiver depths. The data

for ranges greater than 120 km are missing in Fig. 11.10, and the last

two points near the 120 km range are suspect. However the shallow water

23
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portions of Fig. 11.10 agree fairly well and the calculations show the

rolloff that occurs near 80 kmD where the sloping bottom region begins.

In Fig. mu.1 the agreement is not as good as in the previous two cases.

The calculations seem to be biased downward from the data by about 2 dB.

There is reason to suspect that the receiver depth for this data set is

incorrect, which might easily account for the apparent bias between the

data and calculations.

The examples discussed in this section have compared model

calculations with propagation loss from experimental data. In the next

chapter, which explores the sensitivity of upsiope and downslope

propagation to sediment attenuation, additional examples of calculations

using AVtAB will be presented.
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CHAPTER III

A STUDY OF UPSLOPE AND DOWNSLOPE ACOUSTIC PROPAGATION

The purpose of this chapter is to report on the results of a

sensitivity study of the effects of sediment attenuation on upslope and

downslope acoustic propagation and to identify the important bottom

interaction mechanisms. In the past, similar investigations 1 5 have been

undertaken. These studies have, however, relied on modeling methods that

employed a relatively crude description of the bottom. For example, in

Ref. 15 the phenomena of slope enhancement were studied using the para-
16-19 20

bolic equation (PE) and the Trimain ray trace models. Both of

these models use a restrictive description of the bottom involving a

critical angle below which there is zero loss and above which there is

some constant loss. The work reported in this chapter will delve deeper

into the role played by sediment attenuation and will describe the bottom

in much greater detail.

The modeling tool to be used to investigate attenuation effects in

upslope and downslope propagation is the adiabatic normal mode model

described in Chapter II. The upslope and downslope propagation geometries

are shown in Fig. III.1 and 111.2. The source position is at r=O and

Z=Zo, and the bathmetric variations, assumed to be linear, occur between

r and r2 . The substrate is assumed to have solid properties and follows

the water-sediment bathvmetrv at a depth of 200 m.

To isolate the attenuation and sloping bottom effects from any other

bottom interaction effects, the following waveguide sound speed profile

was assumed. The water waveguide sound speed profile was held constant

in ran 'e and was truncated as the water depth varied from deep to shallow.

This profile is illustrated in detail in Fig. 11.5. The sound speed was

taken to be continuous across the water-sediment interface and was assumed
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to increase linearly with depth into the sediment with a gradient of
-l

1 sec . The substrate, which began at a depth of 200 m below the water-
3

sediment interface, was assumed to have a density of 2.7 g/cm and con-

stant shear and compressional wave velocities of 2700 and 5000 m/sec,

respectively. The substrate shear and compressional wave attenuations

were taken to be 0.2 and 0.03 dB/m/kHz, respectively. The sediment,
3which was treated as a fluid of density 1.4 g/cm , was assumed to have an

attenuation that was constant in depth and range. The values of sediment
21,22

attenuation were selected from a range of values appropriate for a

high porosity sediment. Other questions concerning lateral sediment

variability along the slope were deferred to later investigations.

A. Downslope Propagation

1. Basic Mechanism

The basic mechanisms involved in acoustic propagation in a

horizontally stratified waveguide are: spreading loss, attenuation loss

due to bottom interaction effects, and intermode phasing effects. For a

range variable bathymetry, an additional mechanism must be considered.

This mechanism has been called the megaphone and inverse megaphone effect

and is related to the changing acoustic energy density that accompanies

bathymetry changes. In downslope propagation this mechanism will act to

produce additional loss and will be referred to as renormalization loss

(RL) in this section. The term renormalization is used because the

megaphone effects can conveniently be thought of in terms of changes in

the normalization of the normal mode depth function that arise because

of bathymetry changes.

In an isovelocity waveguide with perfect, sloping boundaries,

the mode depth function normalization factor is proportional to H
- 1/2

where H is the local water depth. In the more general case involving

penetrable boundaries, the normalization factor will be approximately

proportional to H - where H is an effective interval between
eff ,eff
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which the majority of the modal energy is contained. This effective

interval will be approximately the difference between mode turning points.

To illustrate the concept of renormalization loss, consider

Fig. 111.3. Figure 111.3 depicts propagation loss versus depth for two

ranges computed for the waveguide of Fig. 111.1. In this computation

the slope begins at range rI = 70 km and ends at r2 = 160 km. The initial

water depth is 430 m and the final water depth is 1825 m. The slope

angle is about 10 and the frequency is 50 Hz. All attenuations are set

to zero and the mode sums are done incoherently so that only spreading

loss and renormalization loss mechanisms are active. The spreading loss

between the two ranges of 65 and 200 km is given by

•12oo0
SL = 10 1og- -) = 4.88 dB

The renormalization loss can be estimated by assuming that the acoustic

energy is effectively confined between the surface and substrate inter-

faces. With this assumption the RL is given by

RL 10 log(j) = 5.07 dB

and the total loss between the two ranges is given by

SL + RL ;l 0 dB

This result appears to be consistent with the difference between the two

curves of Fig. 111.3.
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2. Attenuation Effects

Figures 111.4-111.7 depict the computed propagation loss versus

range for the waveguide geometry of Fig. III.i. Three curves cor-

responding to sediment attenuations of 0, 0.025, and 0.070 dB/m/kHz are

presented on each figure. These attenuation values span a range
21' 22

appropriate for a high porosity sediment. Figures 111.4 and 111.5 con-

sider a 10 bottom slope and receiver depths of 91 and 400 m, respectively,

while Figs. 111.6 and 111.7 consider a 30 slope with the same receiver

depths. For all four plots the source is fixed in the shallow water at

zero range and a depch of 91 m. The edge of the slope begins at

* = 70 km and ends at about r2 = 160 km for the 10 slope and at about

r2 = 97 km for the 30 slope.

One factor common to all four of the previously described plots

is the increased sensitivity of the propagation loss to the sediment

attenuations in the deep water regions (r 120 km). This increased sen-

sitivity can be attributed to the changing character of the normal mode

depth functions with range and is strongly dependent on source and

receiver depths. For this reason the behavior of the plots in Fig. 111.4-

111.7 will be discussed in detail next, and the effects due to different

source-receiver depths will he discussed ,ater.

As mentioned above, the increased se, nsitivity to the sediment

attenuation in the deep water regions is due to the changing character of

the mode depth functions. The deep water ;ound speed profile is shown

again in Fig. 111.8. The profiles for the shallow water regions were

obtained by truncating this profile at the appropriate depth. Simply

stated, the increased sensitivity to attenuation for the source-receiver

depths occurs because the deep water sound field is dominated by a dif-

ferent set of normal modes than the shallow water field. To see how this

arises consider Figs. 111.9 and llI.10. Figure 111.9 depicts the normal

mode depth function of mode 1 in the shallow water region, and Fig. III.10

depicts mode 1 in the deep water region. In the shallow water region,

mode 1 is a dominant mode because it interacts least with the bottom.
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Following mode I into the deep water, one would expect it to remain a

dominant mode since it would have suffered less attenuation as it propa-

gated through the shallow water. This, however, does not occur when the

receiver is located at a shallow depth because mode 1 is evanescent at

shallow depths. Therefore, even though mode 1 was dominant in the shal-

low water, it does not contribute to the field in the deep water because

of its changed character. This type of behavior is experienced to some

extent by all the dominant shallow water modes with the net result that

the field in the deep water is dominated by a different set of modes

that have been attenuated more and in a different manner than the shallow

water dominant modes. Hence, it is not surprising that the sensitivity

to attenuation varies from shallow to deep water. The previous analysis

will of course depend on the water sound speed profile and its range

behavior to some extent, hut it is believed to be of general validity.

To better understand how, the above picture changes with

receiver depth, consider Figs. 111.11 and 111.12. These curves depict

propagation loss versus depth for sediment attenuations of 0 and

0.025 dB/m/kHz and ranges of 75 and 200 km. A comparison of Figs. 111.11

and 111.12 shows that, over a wide range of potential receiver depths,

the deep water field is more sensitive to an attenuation change than the

shallow water field. The deep water profile at 200 km has a fully

developed sound channel between about 600 and 1400 m with minimum loss

at around 800 m. Note from Fig. 111.12 that, as the receiver depth moves

into the sound channel, the increased sensitivity in the deep water

becomes less or becomes nonexistent. This behavior is not surprising

since the shallow water dominant modes, which have the low mode numbers,

are precisely those modes that become SOFAR deep water modes. Therefore,

for receiver depths in the deep water SOFAR channel, the shallow water

modes retain their dominance over the other modes in the deep water.

The influence of source depth on the sensitivity to attenuation

is not expected to be significant, because the source is located in

shallow water where the sound speed profile is essentially isove locity,
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and all the modes have turning points near or in the bottom. Hence, all

the modes have approximately equal amplitudes and are all equally likely

to become excited.

An important conclusion to be drawn from the work concerning

attenuation effects is that, when attempting to model acoustic data for

downslope propagation, one must use the most accurate description of the

shallow water attenuation profile that is available. This conclusion is

based on the previous findings that show increased sensitivity to atten-

uation in deep water regions. For example, the behavior shown in

Figs. 111.4-111.7 indicates that a small error or change in the attenua-

tion might produce negligible changes in the shallow water field while

giving rise to substantial changes in the deep water field. This line of

thought also points to the importance of as accurate a representation of

the depth variation of the shallow water attenuation as possible, since

the details of the depth variation of the sediment attenuation profile

(particularly the deeper portions), while being insignificant in the

shallow water regions, could conceivably become important as the dominant

mode groups vary from shallow to deep water.

3. Slope Angle Effects

In this subsection the effects of bottom slope angle on

propagation loss will he described. The waveguide model is the same one

used throughout the previous discussions except that bottom slope angles have

been varied. In all cases the slope begins at rI = 70 km (see Fig. IIl.1).

Figures 111.13 and II.14 show incoherent propagation loss

versus range for receiver depths of 91 and 400 m. The source depth and

attenuation for both figures are 91 m and 0 dB/m/kHz. respectively. Two

curves are shown in each figure, one for a bottom slope of 1 and one for

3. In the shallow (short ranges) and deep (long ranges) water regions

the curves for both slopes coincide. In the range regions where the

water depth Is changing, the I' curves show less loss than the 30 curves.

This behavior occurs because renormalization loss for the 10 bottom slope
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lags that for the 30 slope since the water depth is changing more slowly.

The curves merge in the shallow and deep water regions since the water

depths are the same in these regions.

Figures 111.15 and 111.16 are the same as Figs. 111.13 and

111.14 except that sediment absorption has been added. A sediment atten-

uation of 0.025 dB/m/kHz was used. The curves for bottom slopes of 10

and 3' again merge in the shallow water regions. As propagation over

the slope begins, the 10 curve lies above the 30 curve; however, as the

range increases the two curves intersect and the 10 curve falls below

the 30 curve. This behavior occurs because the region of significant

bottom interaction along the 10 slope is of greater extent than that

along the 3' slope, i.e., the attenuation in propagating over a 10 slope

surpasses that in propagating over a 30 slope. The curves in Figs. 111.15

and 111.16 indicate that the transmission of acoustic energy from shallow

water into deep water is not too sensitive to bottom slope angle. The

propagation loss shows differences over the slope regions, but the deep

water propagation loss is little affected. As another illustration of

this point, consider Fig. 111.17, which shows the propagation loss versus

depth at a range of 200 km for slope angles of 10 and 30* Note the total

insensitivity to bottom slope in the deep sound channel between 600 and

1400 m. The only effects are seen at the shallow and deep depths because

the bottom interacting modes contribute more heavily to the field aL

these depths.

4. Level of Detail

The final topic with regard to downslope propagation concerns

the level of detail with which one must describe the properties of the

sloping bottom. Or more specifically, how far along the slope do the

bottom properties have to be accurately described? The answer to this

question is a measure of when acoustic bottom interaction along the slope

ceases to be the driving mechanism influencing the field. This question

is addressed in a rudimentary way in the following discussion.
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Figure 111.18 depicts propagation loss versus range for a

bottom slope of 10 and sediment attenuations of 0.025 and 0.070 dB/m/kHz.

The source and receiver depths are 91 and 400 m, respectively. The

circles represent attempts to predict the propagation loss at longer

ranges from the known value at shorter ranges, assuming spreading loss

and renormalization loss only. For example, if the loss at 100 km were

110 dB, the projected loss at 115 km would be given by

110 dB + 10 log 115 L

100 R

where the RL is estimated assuming the acoustic energy is contained

between the surface and range variable substrate.

The reason for making these projections is that, when the

projected values of propagation loss begin to accurately predict the com-

puted field, this indicates that the attenuation due to bottom interaction

is no longer playing an important role. Figure 111.18 shows that between

110 and 125 km the projected propagation loss values begin to follow the

character of the computed curves but are biased slightly downward. An

examination of the water profile and the truncation procedure reveals that

between 115 and 125 km the profile is beginning to support SOFAR and RSR

types of propagation as the sound channel is developed. That the projec-

tions begin to track the calculations past 125 km is not surprising,

since the SOFAR and RSR modes of propagation that become possible are not

strongly bottom interacting. The uniform downward bias of the projections

at the longer ranges is most likely due to a systematic error induced by

assuming the energy to be contained between the surface and substrate

along the slope. In the slope region the bottom interacting energy is

being stripped away and the energy transport is occurring higher in the

waveguide.

Thus, one can conclude that the formation of the sound channel

seems to mark the point along a slope at which bottom interaction ceases

to be important. This conclusion seems intuitively correct and can
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easily be checked. To do so the solid curves in Fig. 111.18 were

recomputed in the same manner as before but with the bottom attenuation

set to zero for ranges greater than 120 km. The resulting curves were

indistinguishable from those of Fig. 111.18.

B. Upslope Propagation

In this section the upslope propagation of sound and its dependence

on bottom attenuation are investigated. As in the previous section con-

cerning downslope propagation, the basic mechanism involved in upslope

propagation will be described and the sensitivity of propagation loss to

bottom attenuation will be examined as well as its sensitivity to bottom

slope angle.

1. Basic Mechanisms

The basic mechanisms involved in upslope propagation are the

same ones that are involved in downslope propagation with the addition

of one extra mechanism involving mode cutoff. As sound propagates upslope

the horizontal wave numbers decrease with range until mode cutoff is

reached. This occurs when the equivalent bottom angle of the mode

reaches the critical angle for the perfect transmission of sound into

the substrate. At this point the mode passes into the continuous

spectrum and the energy associated with that mode is removed

from the field since it radiates into the substrate and is lost. This

additional loss mechanism is not present in downslope propagation. It

should be emphasized at this time that any mode-mode coupling effects

are being ignored. The inclusion of mode-mode coupling would allow modes

nearing cutoff to couple some of their energy into modes with larger wave

numbers which are still far from cutoff. This process would tend to

reduce the energy lost due to mode cutoff processes. Past work3'6'7 sup-

ports the idea that mode coupling effects might be small for slope angles

of practical interest, and they will be ignored in the following treat-

ment. More sophisticated ways to estimate the importance of mode
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coup Iing and approximate ways to include the i Il Iects will he discur-sed

in Chapter IV.

To illustrate the et'evt-. Lo mode utofI , consider Fig. 111.19,

which shows the results of propagation loss versus depth for two ranges,

35 and 200 km. The waveguide model used to compute these curves is shown

in Fig. 111.2 with r1  40 km and r, about 130 km. The source depth was

taken to be 91 m, the sediment attenuation was set to zero, and a fre-

quency of 50 Hz was used. All other aspects of the waveguide were the

same as those in the previous section.

If one were to estimate the difference between the two curves

of Fig. 111.19, assuming a spreading loss and a gain due to renormaliza-

tion, the expected difference would be

10 log( - 10 log(235) - 2.5 dB

The average difference between the two curves in Fig. II.19 is of the

order of 5-7 dB and is considerably more than the expected 2.5 dB. This

difference in propagation loss will be attributed to losses due to energy

radiated into the substrate. Again, the reader is reminded that the

inclusion of mode coupling could act to reduce the loss due to radiation

into the substrate.

2. Attenuation Effects

Figures 111.20-111.22 depict propagation loss versus range

versus sediment attenuation for three different combinations of source-

receiver depths. The bottom slope was taken to be I with the arrows on

the range axis denoting the beginning and end of the slope. Figures 111.20

and 111.22 have source depths that are above and below the deep water sound

channel, respectively. The source depth for Fig. 111.21 is 1200 m

which is in the deep water sound channel. Figures 111.23-111.25 show

the same curves as Figs. I1I.20-I11.22 with the exception that the bottom
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slope angle is 30. With reference to Fig. 111.2, r1 is 40 km and r2 is

about 130 and 67 km, respectively, for slopes of 10 and 3'. There are

two notable characteristics of the six curves just described. First,

increased R-nqitivity to attenuation in the shallow water (long ranges)

regions is exhibited with source depths above or below the deep water

channel (Figs. 111.20, 111.22, 111.23, and 111.25) when compared with

sources in the channels. Second, the curves for sources in the deep

water sound channel (Figs. 111.21 and 111.24) show a more uniform sensi-

tivity to sediment attenuation from deep to shallow water and exhibit a

slope enchancement effect that is maximal at the edge of the slope in

shallow water.

The behavior of the curves for the deep and shallow source

depths can be explained as follows. For shallow or deep source depths,

the bottom interacting modes are excited to the greatest degree; i.e.,

little excitation of SOFAR modes occurs. Three mechanisms tend to reduce

the number of effective modes as they travel upslope: (I) increasing

mode attenuation due to increasing mode equivalent bottom angle coupled

with the changing mode character, (2) mode cutoff processes, and (3)

spreading loss. The first of these results in increased sensitivity to

sediment attenuation and is analogous to the mechanism discussed in the

previous section concerning downslope propagation. The strongly bottom

interacting modes excited by deep or shallow sources become even more

strongly bottom interacting as they propagate upslope, and are therefore

more heavily attenuated. This results in increasing sensitivity to

attenuation as the modes propagate upslope. The renormalization effect

acts to counteract the above three mechanisms by increasing the acoustic

energy density in the water as the water depth decreases, but for the

shallow and deep source depths the renormalization gain (RG) is overcome

by the strong bottom interaction.

When the source is located in the deep water sound channel, as

in Figs. 111.21 and 111.24, the SOFAR modes (which do not significantly

interact with the bottom) are excited along with the bottom interacting

modes. In this case the renormalization gain overtakes the attenuation loss
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and actually causes an increase in intensity with range. This increase

peaks near the edge of the slope where the renormalization gain is maximum.

This effect is referred to as "slope enhancement" and is readily apparent

in Figs. 111.21 and 111.24. Another effect of the renormalization gain

for sources in the deep water sound channel is to lessen the sensitivity

of the propagation to sediment attenuation in the shallow water.

Figure 111.24 shows greater sensitivity than Fig. 111.21 because the portion

of the range interval that is in shallow water is much greater because

of the steeper transition from deep to shallow water.

Another view of upslope propagation is given in Figs. 111.26

and 111.27. These curves present propagation loss versus depth for five

ranges and source depths of 1200 and 1600 m. The bottom slope is 10 and

the sediment attenuation is 0.025 dB/m/kHz. Note the slope enhancement

effects in Fig. 111.26, particularly at 125 km. This effect is absent in

Fig. 111.27. Also note the less efficient transfer of energy into shal-

low water at 200 km with the deeper source.

The same general conclusion reached in the section on downslope

propagation can be drawn here. The work presented in this section

reinforces the hypothesis that the bottom attenuation properties in the

shallow water regions are most critical when attempting to model upslope

sound propagation, particularly for shallow or deep sources.

3. Slope Angle Effects

In this subsection the dependence of upslope acoustic

propagation on slope angle will be investigated. Figures 111.28-111.30

depict propagation loss versus range for three different source-receiver

depth combinations, slope angles of 10 and 30, and a sediment attenua-

tion of 0.025 dB/m/kHz. The first arrows along the range axes denote the

starting range of the slope. The second and third denote the end of the

upslope rise for 30 and 10 slope angles, respectively.
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The curves for shallow and deep sources (Figs. 111.28 and

111.30) show a much greater sensitivity to bottom slope angle than the

downslope cases (see Figs. 111.15 and 111.16). Figure 111.29 shows some-

what less sensitivity. The behavior of the curves in Figs. 111.28 and

111.30 is similar. The 10 and 30 curves are identical to a range of

60 km; beyond 60 km the I curves lie above the 30 curves, with the two

curves becoming parallel in the shallow water flat bottom regions of the

waveguide (r > 130 km). At these ranges all propagation mechanisms are

the same, thus accounting for the parallel behavior of the curves. The

downward bias of the 3' curve occurs because with the steeper slope the

sound reaches the shallow water region sooner. Since bottom interaction

is greatest in the shallow water region, sound is exposed to the highest

loss areas over a greater distance for a steeper slope. For example,

the 30 slope has a range duration of about 27 km and the 1' slope about

80 km. Therefore, one would expect the 30 curve to be biased downward

from the 1 curve at the longer ranges by an amount proportional to the

excess attenuation accumulated by longer exposure to the larger shallow

water attenuation effects.

Figure 111.29 exhibits a more complicated behavior than

Figs. 111.28 and 111.30 because of the slope enhancement effects now

possible with a source in the sound channel. The 10 curve is again above

the 3' curve in the shallow water regions (r > 130 km) for the same rea-

sons stated above. In the region between 40 and 115 km the 30 curve lies

above the 10 curve because of slope enhancement, which is maximized first

for the 30 slope.

Figures 111.31 and 111.32 depict upslope propagation loss

versus depth at a range of 200 km for source depths of 1200 and 1600 m.

Each figure contains a curve for bottom slope angles of 10 and 3'. By

comparing these figures with Fig. 111.17, one can see that the transmis-

sion of sound upslope is more sensitive to slope angle than downslope

transmission. Figure 111.31 shows less slope angle sensitivity than

Fig. 111.32 because the initial field has a larger portion of nonbottom

interacting modes for the 1200 m source depth and thererore exhibits less
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sensitivity to bottom attenuation effects. The sensitivity to slope angle

is significant for the 1600 m source depth, and the same type of behavior

is obtained for shallow source depths.

C. Conclusions

This section summarizes the major conclusions reached during the

course of the work on upslope and downslope propagation. It has been

determined that the gross structure (minus phase effects) of acoustic

propagation over a sloping bottom can be explained in terms of bottom

attenuation effects, renormalization effects, spreading loss, and mode

cutoff effects. The renormalization effects produce a gain in upslope

propagation and a lo,,s in downslope propagation. The mode cutoff effects

are not operational in downslope propagation.

Concerning downslope propagation, the following statements can be

made.

(1) The acoustic field is particularly sensitive to the shallow

water bottom attenuation profile.

(2) The importance of bottom interaction mechanisms decreases as

sound propagates from shallow to deep water and becomes negli-

gible when the deep water sound channel becomes fully developed.

(3) The sensitivity of the acoustic field to the bottom attenuation

greatly increases as sound propagates from shallow to deep

water.

(4) Downslope acoustic propagation is not particularly sensitive to

bottom slope.

With regard to upslope acoustic propagation, the following statements

can be made.

(1) The acoustic field is particularly sensitive to the shallow

water bottom attenuation profile.

(2) The importance of bottom interaction mechanisms increases as

sound travels upslope from deep to shal low water where it

reaches a maximum.
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(3) The sensitivity of the acoustic field to the bottom attenuation

greatly increases as sound travels from deep to shallow water.

(4) Upslope sound transmission is sensitive to slope angle,

especially for deep or shallow source depths.

(5) A slope enhancement effect is possible in upslope propagation

and is most apparent for source depths in the deep sound

channel.
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CHAPTER IV

THEORETICAL DEVELOPMENT OF THE MATHEMATICAL FORMALISM
FOR IMPLEMENTING COUPLED MODE THEORY

The purpose of this chapter is to report on some further extensions

of the theoretical mode coupling work that was completed in 1979 (see

Ref. 4). This previous work focused on placing coupled mode theory on a

firm theoretical foundation, and a corrected coupled mode theory was

derived for use in propagation problems involving sloping boundaries.

The work to be presented in this chapter concerns the implementation of

coupled mode theory as a computational tool. Questions concerning when

mode coupling effects become important, the coupling of energy into the

backscattered field, and approximate methods for including mode coupling

processes are addressed.

The material in this chapter is presented in the following order.

First, expressions describing the radial functions for a general range

dependent waveguide are derived. The derivations employ a WKB approxima-

tion for the radial Green's function. Next, first order perturbation

theory is applied to the radial functions to produce expressions correct

to first order in the rates of change of the medium, and attenuation is

introduced. Finally, possible applications of the theoretical develop-

ments are discussed. These discussions concern the neglect of the back-

scattered field, estimation of the importance of mode coupling compared

to attenuation, approximate ways to include mode coupling, and the use

of modal transmission and reflection coefficients.
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A. Theory

1. Fundamentals

Expressions for the acoustic field due to a point source,

including mode coupling to first order, provide the starting point for

the theoretical work of this section. These expressions were derived in

detail in Ref. 4 and the results are reproduced below.

2 2[V +k (z,r)iW(z~r) = -476(r-r ) (4.1)

ipz~ n (~)S n~:~ - (z 0 . (4.2)

L_+ k 2(r) + 4 2jGm(r) = -2 B~ G n B(r) . (4.3)

_~ + k (z,r) - k (r)] (z,r) = 0(4.4)

2 2 21 -2 dGnB(45_- + k2(z,r) - k 4 (r-~ 64 _ (45az2 n~) n C ndr nn n

B (r) =[ m(z,r) n (z ,r)dz .(4.6)

0

In Eqs. (4.1) and (4.2) *p is the velocity potential and in Eq. (4.3)

denotes a surmmation in which n=m is excluded.n
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(4.7)
n n

n#m

The waveguide context within which the developments of this chapter are

discussed is shown in Fig. IV.1. This waveguide geometry assumes that

there is a region near the source between 0 and r which is essentially0

independent of range and a farfield region starting at rf where the

medium is again independent of range. The range variability is assumed

to occur between r and rf and is not restricted in any way.

The solution of Eq. (4.3) is of interest. The corrections to

the depth functions 6 n are not considered since previous work has indi-

cated that they are of minor importance in general and of no importance

when incoherent mode sums are performed. The solution to Eq. (4.3) can

be expressed as

Gm(r) = Fm(r) + P (r) , (4.8)
m m m

where Fm(r) and P (r) are the homogeneous and particular solutions tom

Eq. (4.3), respectively. The function F satisfiesm

( + k2 (r) + Fo(r) = 0 (4.9)

and Pm which contains the effects due to mode coupling, can be expressed

as
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P (r) = g(r,r') m(r')dr' + g<(rr') m (r')dr' (4.10)
m fJm m fjm m

0 r

In Eq. (4.10) gm(r,r') is a Green's function formed from two linearly

independent solutions of Eq. (4.9) and is given by (see Ref. 23,

Chapter 16)

(+)(r) (-)(r1)

g(rr') = WMr > r' (4.11)

m

and

(+) (r') ()r
< Ym y
gm(rr') = W r < r' (4.12)

where y and y(-) are two linearly independent solutio.is of Eq. (4.9)

and Wm is this Wronskian defined by

W = Y (-) (+) - (+) d y(-
m i dr m -m dr m

To this point the development has been completely general even

though the particular solutions cannot be obtained without resorting to

some sort of iterative or perturbation technique. Now, a WKB approxima-

tion for the Green's function will T- introduced and used throughout the

remainder of this chapter. A WKB Green's function should work quite well

because the solutions to Eq. (4.9) for the discrete modes have no turning

points in realistic propagation problems. The WKB Green's function is
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obtained by assuming that y(+) and y(-) are given by the KB solutions

of Eq. (4.9)

r(±) 1
(r) =r)exp ±i km(x)dx . (4.14)Ym 4

Vk (r) 1 m

In Eq. (4.14) r=O is the reference range and the 1/4r 2 term in Eq. (4.9)

is neglected in comparison to k 2 . If Eq. (4.14) is used with Eqs. (4.11)-
m

(4.13), one obtains the WKB Green's function given below.

>r

g_(r,r') = - r > r' (4.15)
gm~' 2i.'k Cr) k Cr')

exp (i k (x)d

g<(r,r') =r r' (4.16)
m 2i/k (r) k Cr')

m m

The solution to Eq. (4.3) may now be expressed within the WKB

approximation as

rY (-) (r') (r')dr' (+) Ir) Bm(r')dr'

Gm(r) = Fm(r) + Y Cr) 2 + Ym r 2i

0 r

(4.17)

where Eqs. (4.8), (4.10), and (4.1l)-(4.14) were employed. Equa-

tion (4.17) may be recast into the following form.
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G()r (()r(r)+ (r) (4.18)

m m m M m m

where r(+  and r - are given byxi m

y- (r') 6 (r') dr'
rm 2(r) 21 (4.19)

0

and

(+)(r') (r')dr'
F( () f= Ym ( mr)

r 2i . (4.20)
m J 2

r

Returning now to the waveguide geometry of Fig. IV.l, one can express

the solutions for the radial functions in the three regions noted in the

following forms.

G(1)(r) Amr[H 1 (kmr) + a H( 2 ) (k r) r < r ' (4.21)
m M m 0o m 0  mf 0

) (1 (+) (+) + y(-) r
G (m (r) Aml mYm mm+ C m Ym m Ym ro rf

(4.22)

G (r) = (k mr) r > r f (4.23)

In Eq. (4.22) a WKB approximation for F m(r) has been employed. In

Eqs. (4.21) and (4.23), it is to be understood that the wave numbers are
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to be taken from the sets appropriate to the range invariant regions 1

and 3, respectively.

The constant A is easily determined by requiring that themfield satisfy point source conditions at range 0. Near r=O0, 
l  should

satisfy the following equation (see Refs. 11 and 4).

(G"I) 1  -26(r)P(z 0 o) (4(Z.2
Lr \m 0 mr/o)r (4.24)

rr

with L r an operator given by

2
d I d 2

L r 2+r-Tr+ k
r d r

(1,2)
If one recognizes that L operating on H

(
' givesr 0

L (1) 2i 6(r)
r 0 (kmr) = T r

H(2) -2i 6(r)

r 0 (kmr) 7T r

then A is easily seen to be given bym

A =  ( 1-an ) (4.25)
m (1-am
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The remaining constants in Eqs. (4.21)-(4.23) may be found by

requiring the G function and its derivative to be continuous across them

interfaces between regions 2 and 3 at rf and 1 and 2 at ro. Starting

with the interface at rf first, one finds that e and b are given byf m m

: = 0 (4.26)

and

[ (+ 1 (+)(r

b = + m f (4.27)
m m H( 1 ) lkm(rf)rfl

0

In obtaining Eqs. (4.26) and (4.27) the following expressions were

employed.

S(-)(r) =0 r > r ,m - f ,(4.28)
mf

d (.)(4-)
dr i ikmY 0 (4.29)dr Ym m -

Matching the solutions for G(1) and G (2) at r allows one to determine
m 0n

a and am mn

(-)(r)(-) (
o

Ym 0 m 0
a = (4.30)

m A v' H(2)km(ro)r
m 0 0 0 01
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"r ki k(ro)ro

0 0 (+) . (4.31)
m (+4) (o

Ym (r0 )

In determining Eq. (4.31), use was made of the following expression.

F(+)(r) = 0 r r (4.32)
m 0

Some simplification of the matching constants can be obtained by using

the asymptotic forms of the Hankel functions given by

H(1,2)(x) = 2 e i(x-7/4) (4.33)

0 1TX

which is consistent with the use of the WKB approximation throughout this

chapter. Equations (4.25) and (4.30) can be combined to give

(mF-)( o

CT~ (r)
a = . (4.34)
m (-)1+ m  (ro)

Equation (4.31), with the use of Eq. (4.33), becomes

m T(4.35)

88



Equation (4.27) becomes, with the use of Eqs. (4.25), (4.33), (4.34),

and (4.35),

m 1 +)] (r )

b( I+ M fMl expii k dx-ik (r)r} (4.36)
m ~ ~ m 1oJ ()

0

In Eqs. (4.34) and (4.36) u is a constant for a given mode number defined

by

(4.37)

m v7 P(o(z m o

The overall normalization constant A can be obtained by combining

Eqs. (4.25) and (4.34) to obtain

Am = iP (zO ) m(Zo,O) I+GmF(-)(ro (4.38)

At this juncture one can write down a general expression for

the radial function in region 2 where the range dependence of the medium

occurs. This expression is given below.

(2) V(+)

, (r) [r M + + N (4.39)m m 1U m  m -m m 'M

It is reassiring to n1ote that Eq. (4.39) reduces to the radial equation

for a horizontally stratified medium when the range dependernce of the
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medium goes to zero (Sm*O). In this situation G(2)(r) should reduceM m

to

ilnp(z (z ) r H (1)(kr0o m(ZoO) (kmr)

If one uses Eq. (4.33) it is easy to verify that Eq. (4.39) reduces to

the appropriate limit as the range variability of the medium approaches

zero.

Equation (4.39) can be rearranged to the following form.

() y +() [P- -+(r ()r ()r

G 0( m)  (r (r) + r (r0]YM(r) + rm (r) y (

(4.40)

With the equation for G(2 ) written in this form all the effects due to
m

mode-mode coupling are isolated in the second and third terms. The first

term in Eq. (4.40) is the forward going adiabatic solution for mode m.

The second term represents the contribution from mode m to the forward

going field arising from energy coupled into mode m from the other propa-

gating modes. The third term represents the contribution from mode m to

the backscattered field due to energy coupled into mode m from other modes.

With reference to the radial equations in the source and

farfield regions, i.e., Eqs. (4.21) and (4.23), it is possible to define

potentially useful mode transmission and reflection coefficients. The

coefficient a given by Eq. (4.34) can be defined as the reflection

coefficient for mode m. This reflection coefficient gives the ratio of

the backscattered amplitude to the forward going amplitude of mode m. In

the limit of no range dependence, am goes to zero as expected. The coef-

ficient b in Eq. (4.23) can be defined as a mode amplitude transmission
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coefficient. This transmission coefficient is proportional to the

amplitude of mode m that is transmitted from the source region through

the range dependent region and into the farfield. More will be said

about the potential use of these reflection and transmission coefficients

later in this chapter.

2. First Order Perturbation Theory

As mentioned before, because of the coupled nature of the

differential equations for G m , one must resort to an iterative perturba-

tion theory scheme to solve for the Gm(r) functions when using the Green's

function methods outlined in the previous section. There are ways other

than using Green's functions to solve4 the coupled radial equations. For

example one can solve Eq. (4.3) directly using finite difference tech-

niques. This technique, however, has the disadvantage that it requires

the manipulation of matrices which are of the order of M • NR, where M is

the number of modes present and NR is the number of range mesh points.

One can also solve Eq. (4.3) in principle by diagonalizing the system of

equations and then using standard techniques (see Ref. 24). This method,

however, requires a range dependent diagonalization procedure, except for

certain canonical types of range dependence, and is not particularly

attractive.

The technique to be described in this section is a first order

perturbation theory method for solving Eq. (4.3) via Eqs. (4.8)-(4.10).

This method is the same one used so successfully in the solution of the

Lippmann-Schwinger25 equation of quantum mechanical potential scattering.

The perturbation iteration procedure is carried out only to first order

here because, due to the nature of the boundary condition approximations

(see Refs. 4 and 5) in coupled mode theory, one is only entitled to

include mode coupling effects to first order. This first order perturba-

tion theory is analogous to the Born approximation25 of the Lippmann-

Schwinger equation.

The equation to be solved by perturbation theory is
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dk2 , (B. dGn

m (A) dr(41--d 2 m m(r)Gm =A CBmr) = -A 2! - 4.1

where a perturbation strength parameter X has now been introduced. The

perturbation parameter X is of first order in Bmn, which also implies it

is of first order in range rates of change of the waveguide such as

dH/dr=k and dc/dr=6. Here H(r) is taken to describe the depth of an

interface as a function of range in the waveguide and c(r) represents

the radially variable ground speed.

X - 0(Bmn

By introducing X, m(r) has been redefined as a zero order quantity. The

end results will correspond to the theory outlined in the previous sec-
tions when A is set equal to 1 as is customarily done. The solution to

Eq. (4.41) can be written as

G m(r) = Fm(r) + k f gm(r,r') 8m(r')dr' (4.42)

0

where it is to be understood that the integral in Eq. (4.42) is to be

split as is done in Eq. (4.10). The function Fm, as before, satisfies

Eq. (4.9).

To implement the perturbation theory the radial function and

the source term are expanded in powers of A as follows.

G(r) GO m + XGI'm + X2 G2  + ... (4.43)
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(0) (1) 2 (2)

Bm(r) -m (O) + X ^ + + ... (4.44)

M I ' (BmndGi
-(.) -2 . (4.45)m 4=\- dr

If Eqs. (4.43) and (4.44) are used in Eq. (4.42) and terms of like powers

of X collected, the result is

G (r) - Fm(r) , (4.46)
om m

G (r) = gm(r,r') (0) (r')dr'  (4.47)

0

G2 ,m(r) f gm(r r ') m(r')dr' (4.48)

and so on. Therefore, to first order the solution to Eq. (4.41) is given by

G (r) =F (r) + X (r,r') 0 (0(r')dr' , (4.49)
m m fjm

0

which is equivalent to the Born approximation. If one compares

Eqs. (4.40) and (4.49), it is obvious that Fm is given by
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F G(r)=G = o(4.50)
m 0m am

which is simply the WKB solution to the adiabatic radial equation. The

first order effects of mode coupling are included by using Eq. (4.50) to

generate the first order terms G Im(r).

3. Final Expressions

Before writing down the final expressions for the first order

radial functions, it will be useful to introduce attenuation into

Eq. (4.50) in the usual way to give

F(r) = GO'm  = --m --exp f 6m(Xd ( 4.51)

y 0

Equation (4.51) can now be used to generate the first order corrections

G (r) from the zero order source terms $M0 )(r) including the effects

of attenuation. The Gl m(r) functions represent the net amplitude

coupled into or out of mode m due to interactions with the other propa-

gating modes. By introducing attenuation via Eq. (4.51), the coupling

effects given in GI1m will reflect the attenuation of the other modes

(n~m) that are coupling to mode m.

The final first order expression for the field in the range

variable region (Region 2) is given by
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(+) r

G (2 (,) = -- 11+a ()(r) exp(- 6ro)] exp (6x)d
m am  0 0f

m

+ y(+)(r)y (+ ) + Y .ym  (r) (4.52)

Equation (4.52) is obtained by applying the techniques of Section IV.A.1

to Eq. (4.49) with X=l and with km replaced by k m+i6m in the exponentialsm (+) m m

in Eqs. (4.15), (4.16), and (4.33). The y are given below.

r
r ( r)YM f 21

0

(4.53)

r n ') / r' r r
*1 im' r
f dr' Bmn(r') r r exp (kn-km)dX

0 0 r' 0

r y(+)(r')(°)(r ) exp 6mdx)dr'(-) _ _f _ ___21

r (4.54)

S(f r r' i r

'. B (r' exp S (kJ+k)dx 6mdx- 6(x)dan f Bmn k (r') f nkmkfdx 0 /
r 0 r 0

(r ')  -2i Bmn(r' - Y +)(r) exp J (X)d (4.55)

0
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With the further proviso that

d Vk(r)-(r) v -nr [d( ) ., 1 m .= _ << '1

[Br ir vTnk~T nf k(:-k m() + 6.(r)- 6 n(r)] «

the integral in Eq. (4.53) is given by

r r?) r r
dr' B ) exp (kn k )dX- 6 Jdx - x6n(X

0 -0 r' 0

k r) r
B n( r) expL (k-k )dx dx (xinn (r k (r) nxp i kn 6 nx0 x

ilk.(r)-k (r)] - 6n(r) + m (r)

k n (°)  r

Bn (0))n k ) exp - dx

ilk ()- (o)] - 6n(0) + 6 o (0)

A similar statement holds concerning the integral of Eq. (4.54). Thus,

in the limit that the interference wavelength, 127/(kn-km)1, is short

compared to the characteristic range over which the waveguide varies, the
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first order radial corrections follow the range variations in the

interference pattern produced by neighboring modes. Equation (4.52)

along with Eqs. (4.21) and (4.23) can be used to describe the field in a

range variable waveguide like the one in Fig. IV.l. In the next section

of this chapter some potentially useful applications of Eq. (4.52) to

problems of interest will be discussed.

B. Applications

1. Neglect of Backscattered Energy

An important question that arises when considering propagation

in a range variable environment (particularly one with sloping boundaries)

concerns the backscattered field gtnerated by the range dependence of the

medium. In particular one is interested in whether this component is

important when compared to the forward flow of energy. A. 0. Williams
26

addressed this point within the context of a wedgeshaped waveguide with

pressure release boundaries and found the backscattered field generated

in upslope or downslope propagation to be of little significance.

Figure IV.2 shows the magnitude of the forward going amplitude

and backscattered amplitude generated by mode coupling effects for

upslope propagation in an isovelocity wedge. With reference to Eq. (4.52)

curve 1 depicts l (r)+ (ro) I versus range and curve 2 depicts

Iy-(r)1 versus range. The waveguide used to generate these curves had

a rigid sloping bottom of 2.5° slope and an initial water depth of 500 m.

The frequency was 20 Hz and the source depth was 200 m. Figure IV.2

indicates that the backscattered field is very insignificant compared to

the forward going component. In fact propagation loss computations for

the previously described isovelocity wedge proved totally insensitive to

the inclusion or deletion of the backscattered field. This finding might

lead one to suspect that the backscattered field (for reasonable slope

angles) is insignificant for more general types of waveguides as well.

This suspicion is strengthened by the fact that mode coupling effects are
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maximal for a rigid sloping bottom and decrease as the sloping interface

becomes penetrable.

A qualitative argument for neglecting backscattering involves

a comparison of Eqs. (4.53) and (4.54). The integrands of Eqs. (4.53)

and (4.54) consist of slowly varying terms given by

Bn(r) En-:: exp 6n(x)dx ± J dX

Bmr) kn(r) n' f /r/

plus rapidly oscillating phase terms given by

exp (1 (k nk )dx)

For all combinations of m and n the phase integral in Eq. (4.54) is

extremely rapidly varying which, when coupled with the slowly varying

nature of the other terms in the integrand, would lead one to expect

small contributions from y . on the other hand, because wave number

differences are involved in the phase integral of Eq. (4.53), one would

expect more contributions from y , especially for mode numbers n close

to m. As n ranges farther away from m and the phase integral becomes
(+)wilo-

more rapidly varying, the contributions of those terms to Ym will cor-

respondingly decrease. This gives rise to the possibility of a close

coupling approximation in which the n values in the summation of Eq. (4.53)

are restricted to a band of nearest neighbor modes centered about m.

The numerical calculation of the individual terms contributing to

Eq. (4.53) provides a way to quantify the close coupling approximation.
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The remainder of the discussion in this chapter will assume

that the contributions due to backscattering are negligible. A case for

this assumption has been made in the previous discussion and the mathe-

matical expressions required to test the assumption have been presented.

The ratio of the backscattered to the forward going components in the

source region should be an excellent indicator of the importance of

backscattering. This quantity is given by a of Eq. (4.34) and is a
m

measure of the tota: amount of backscattering resulting from the range

dependence of the waveguide. In any event, neglecting backscattering,

the radial function in Region 2 is given by

(2) [ r 1G () r) m exp 6 (x)dx + y +  (4.56)
m am I m m m

and is obtained from Eq. (4.52) by neglecting the terms involving ym-)
Im

2. The Importance of Mode Coupling

Equation (4.56), which is rearranged below, can be used to

obtain estimates of the importance of mode coupling effects.

r r1
exp(- 6mdx) (+)

G( 2 ) (r) ( +Y Ym(+)(r) . (4.57)
m a

m

The first term in Eq. (4.57) represents the propagation and attenuation

of the energy originally imparted to mode m at the source. The second

term represents the net energy transferred into or out of mode m from

the other modes. The mode coupling process described by (+ ) feeds onYm

the other propagating modes, which suffer an attenuation corresponding

to the first term in Eq. (4.57); hence, y m has attenuation effects
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built in, and reflects the fact that the other propagating modes have

increasingly less energy to couple into mode m due to their attenuation

with range.

An examination of the form of Eq. (4.57) reveals that one

might expect the effects of mode coupling to be small or even negligible

if the magnitude of the second term was much less than the magnitude of

the first. This criterion, which is similar to an adiabacity condition

derived by Milder, 3 is shown below.

exfSim(x) dx)

e> Cx (+) (r)d x(4.58)

A numerical comparison of the magnitudes of the first and the second terms

in Eq. (4.57) offers a way of determining when mode-mode coupling is

important and whether or not it should be included. Previous work,
5

which did not consider attenuation, and Fig. IV.2 have shown that the

(+) can influence the magnitude of G (2 ) in a nonnegligible way. Withm m

the inclusion of attenuation it is possible that the importance of mode

coupling might be considerably lessened or become negligible for some if

not all ranges. This hypothesis can be tested by a numerical evaluation

of the condition expressed in Eq. (4.58). The potential payoff for an

investigation of this sort is great. For example, it might turn out

that, at longer ranges from the source, attenuation has so severely

limited the amount of energy which can be coupled into a given mode that

mode coupling effects are negligible. A finding such as this would allow

one to extend the domain of applicability of the adiabatic solution,

thus greatly simplifying the numerical calculations to be performed.

Equation (4.58) can also conceivably be used to quantify the importance

of lateral geoacoustic parameter variability and sloping boundaries in

terms of the mode coupling effects they produce.
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3. Approximate Methods for Introducing Mode Coupling

An approximate method for introducing mode coupling effects,

which can be incorporated in the computational scheme of ADIAB described

in Chapter II, is discussed in this section. This approximate method

attempts to incorporate the effects of mode coupling additively through

Eq. (4.56) and is based on a bin by bin computation of y +)

The approximate method described here will rely on the same

range bin partitioning procedure employed in ADIAB, i.e., the medium will

be partitioned into range bins and mode functions and wave numbers com-

puted for each range bin. In addition mode coupling coefficients must be

computed for each range bin. y(+) can be computed by a summation over
m

the range bins, assuming the amplitude factors of Eq. (4.53) to be con-

stant within a bin and evaluating the phase integrals using the splines

describing the phase integral variation with range (available from ADIAB).

For example if ri denotes the beginning of a range bin, then the contri-
(+) from that range bin can be expressed as follows.bution to Ym fo htrnebncnb xrse sflos

r.
m B (r ) k.(r ) 

n m r-
Y (+)(rlr) n km(r) exp dr'(kn-k) Sdr

0 0

(4.59)

r

S expi .flk n)-k WIdx -f 6 dx n (ri)(r'-ri) dr'

r r

where ri : r < ri+I. In Eq. (4.59) the argument ri used in Bmn, kn, and

6 denotes bin values for the quantities and r is assumed to be withinn
the bin in question. Therefore, to compute the mode coupling term at a

range r located in bin N+I, one would evaluate the following expression.
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N r
Fr) .. Y(+)(r1 ,r 1 ) exp(- 6 d)\ + )(rN, r) (4.60)

where rN s r r tN+l* The mode coupling terms evaluated by Eq. (4.60)

could then be added to the adiabatic radial functions, already available

in ADIAB, to produce the first order radial functions.

The computational method just described could be incorporated

in ADIAB relatively easily. The only additional computations of major

proportions that are required involve the computation of the modal

coupling coefficients for each bin. All the information necessary to

test the criterion given by Eq. (4.58) is available during the process

of computing the coupling terms. It is easy to imagine testing Eq. (4.58)

at the midpoint of each range bin to ascertain the relative importance of

mode coupling in that range bin. This procedure could be incorporated in

the computational scheme to give a running account of the importance of

mode coupling as a function of range.

C. Summary and Conclusions

The purpose of this chapter has been to develop the mathematical

formalism for implementing coupled mode theory and to suggest possible

applications and approximations of the resulting formalism. In Sec-

tion IV.A general expressions for the solutions of the coupled radial

equations arising in coupled mode theory were derived. WKB expressions

for the radial Green's functions were employed in the development of

these expressions.

Modal transmission and reflection coefficients describing a range

dependent segment of a waveguide were also derived. These quantities

are of potential use in continental slope areas. If one were interested

only in the field in the deep or shallow water regions (regions 1 and 3

in Fig. IV.l), large computational savings could be effected because the

field could be computed in the regions of interest using Eqs. (4.21) and

103



(4.23) without having to solve for Eq. (4.22). Moreover, approximate

methods like those described in Section IV.B.3 could probably be used to

evaluate the a and b coefficients. Investigations such as those con-m m

cerning the transmission of noise generated in shallow water over the

continental slope into deep water might be facilitated through the use

of mode transmission and reflection coefficients.

The last part of Section IV.A described perturbation theory as

applied to the solution of inhomogeneous differential equations. This

perturbation theory approach was then applied in first order to the

expressions derived in the first part of the section. In addition atten-

uation was introduced into the formalism and the different components of

mode coupling were pointed out.

In Section IV.B applications and approximations of the results of

Section IV.A were discussed. The first topic considered concerned the

neglect of backscattering in coupled mode theory. Qualitative arguments

and a numerical example were presented to support the contention that

backscattering could be neglected in many problems of interest. The

next topic concerned ways to estimate the importance of mode coupling

relative to an adiabatic description of propagation in which coupling

is ignored. The last topic considered an approximate method for including

mode coupling effects into the radial functions. This approximate method

was described within the context of ADIAB and is based on a bin by bin

treatment of mode coupling effects. A method for keeping a running tally

of the importance of mode coupling effects was also described.
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CHAPTER V

FUTURE DIRECTIONS

In this chapter some possible future areas of research concerning

propagation in a range variable environment will be addressed. The state

of the art regarding bottom interaction in range variable media is at a

point now where the vertical variability bottom interaction problem was

three to four years ago. In other words, we are still identifying the

basic mechanisms and isolating the important geoacoustic parameters

involved in the description of acoustic propagation in a range variable

environment. As a result much of the future effort will focus on "zero

order" questions such as identifying the basic mechanisms and "first

order" questions regarding the sensitivity of acoustic propagation to the

important geoacoustic parameters.

The work presented in Chapter III is an example of an investigation

of "zero o, and "first order" questions. In particular, this work

identified the dominant mechanisms involved in upslope and downslope

propagation and specifically focused on the attenuation mechanism, which

was shown to be an important geoacoustic parameter. The end result was

a study of the effects of attenuation in conjunction with a sloping

bottom. Similar studies involving other geoacoustic parameters as sedi-

ment sound speed and sediment vertical sound speed gradient should be

performed. The mechanisms by which these parameters influence acoustic

propagation is understood in a horizontally stratified medium, and this

understanding should be extended to sloping bottom media.

Future work should address the lateral variability of subbottom

geoacoustic parameters within the context of horizontally stratified

layers. The effects of horizontal variations of sediment sound speed,

vertical sound speed gradients, and attenuation should be investigated.

105



The results of these studies will be important in determining the level

of detail required to specify the lateral variability of the bottom in

order to adequately characterize acoustic propagation. Next, a sloping

bottom should be incorporated in the sensitivity studies to determine

whether lateral parameter variability is important when coupled with a

sloping bottom. The results of this type of study could then be used to

ascertain the relative importance of slope geometry versus lateral

variability.

Other problem areas that should be investigated, in addition to

identifying basic mechanisms and sensitivities, involve range averaging,

coherence, three-dimensional problems, and energy partitioning. The

questions dealing with coherence should focus on the effects of slopes

and lateral variability with respect to field coherence or lack of

coherence. At this point there is not much reason to suspect that lateral

variability by itself will significantly influence field coherence. How-

ever, a sloping bottom, due to multipath conversion effects, could reason-

ably be expected to influence field coherence in a significant way. The

effects of range variability on field coherence (particularly degrading

effects) should be quantified in terms of lateral gradients and bottom

slopes and the results applied to problems involving arrays (either

vertical or horizontal) in a range variable medium.

The problem of energy partitioning between the water and bottom,

which can probably be related to the coherence investigations, is another

important area of investigation. The questions to be asked here relate

to the portion of energy transported through the water compared to the

portion transported via bottom interacting paths or modes, and how this

changes as a function of lateral variability and bottom slope. Since

the degrading effects of bottom interaction on field coherence are related

to the relative amounts of bottom interacting and nonbottom interacting

energy arriving at an array of receivers, a study of energy partitioning

should complement and enhance the coherence investigations suggested

earlier. Another phenomenon that could be investigated from an energy

partitioning point of view is the possibility of energy traveling toward
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a slope being refracted through the bottom in such a way that ic

reappears along the slope. The energetic feasibility of this process

could be examined with energy partitioning techniques and coupled with

the parallel use of ray-mode analogy ("fuzzy ray") techniques.

Another area needing further work is range variability in three

dimensions. Since the numerical difficulties of modeling three-

dimensional range dependence are much greater than for two dimensions,

it is not likely that propagation in a three-dimensional range dependent

waveguide could be modeled routinely. However, approximate ways for

handling certain important cases can and probably sho'uld be developed.

Some important cases that come to mind involve sea mounts and continental

slopes. In a two-dimensional treatment of these types of range varia-

tion, one is missing certain diffraction effects by assuming the bathym-

etry changes to be cylindrically symmetric about the source position.

Approximating a sea mount by a hump or ridge encircling the source is

aesthetically unpleasing and possibly invalid for sources near the sea

mount. It would therefore he advantageous to model potentially important

types of three-dimensional features such as those mentioned previously,

even if only in an approximate manner.

Perhaps one of the more important areas for future consideration

concerns a range averaged description of the lateral variability of the

bottom. One of the main concerns here would be to investigate the rela-

tionship between bottom loss as it would be measured for a laterally

variable bottom and as it would be calculated using a range averaged

geoacoustic model. The measurement of bottom loss, especially using

multibounce techniques, 2,8necessarily entails some sort of range

averaging since different points along the bottom are sampled for dif-

ferent grazing angles and source-receiver separations. The pertinent

question is whether, and in what manner, this measured bottom loss differs

from the result obtained using a range averaged description of the geo-

acoustic environment. Preliminary indications are that there may be

little or no relationship between the two types of bottom loss previously

mentioned, as can be seen in Fig, V.I. Figure V.1 represents a rather
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simple but effective demonstration of the difference one might conceivably

encounter between a measured bottom loss and a computed bottom loss using

a range averaged geoacoustic model.

The crosses in Fig. V.1 represent a numerical reproduction of a

bottom loss measurement using multibounce techniques in which arrivals

having up to five bottom bounces were included. The bottom was taken as

a half-space having a porosity which varied linearly from 85-65% over

200 km (porosity gradient = 10 - %/m). The bottom loss at the ranges of

bottom encounter was assumed to be given by a Rayleigh reflection coef-

ficient and the sediment density and sound speed were obtained as a

function of porosity from Hamilton's regression equations. 2,2The

water sound speed at the sediment interface was taken to be 1540 in/sec.

For each angle considered in Fig. V.1 there are up to five bottom loss

values representative of different numbers of bottom bounces and different

source-receiver separations. To correspond more closely to an actual

measurement these values should be averaged for each angle. The solid

curve represents the Rayleigh reflection coefficient converted to bottom

loss for a half-space, with the range averaged geoacoustic parameters

generated using the median porosity (75%) over the range interval.

Some significant differences between the two types of bottom loss

are apparent in Fig. V.1. For instance, the intromission angle peak has

been shifted by about 7P and the high angle values of bottom loss differ

by a 5 dB bias. The reason for these differences is that the range

averaging of the multibounce bottom loss measurement is nonuniform, in

that the range increment over which the averaging occurs varies across

the angular spectrum. The high angle measured values sample the bottom

over a relatively small range interval near thie source and more closely

resemble the reflection los3i of an 85% porosity sediment. The inter-

mediate and low angle measured values involve more complicated types of

range averaging.

The pertinent question to be addressed in further research is how

rapidly bottom properties must vary with range before a multibounce
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bottom loss measurement becomes totally meaningless. The porosity

gradient in Fig. V.1 is small but large differences in the bottom losses

result. Future work in this area should attempt to incorporate a more

descriptive characterization of the bottom than is available with a

Rayleigh reflection coefficient. It is likely that the ARL:UT bottom

loss models BOTLOSS 29 ,30 or BOTREF 31 could easily be incorporated in the

numerical measurement synthesis scheme, and would allow vertical vari-

ability of the bottom to be incorporated in the study. Other ways of

approaching the range averaging problem, such as through mode attenuation

coefficients, should also be investigated.
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